Midline section of the medulla abolishes inspiratory activity and desynchronizes pre-inspiratory neuron rhythm on both sides of the medulla in newborn rats.
نویسندگان
چکیده
Each half of the medulla contains respiratory neurons that constitute two generators that control respiratory rhythm. One generator consists of the inspiratory neurons in the pre-Bötzinger complex (preBötC); the other, the pre-inspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG), rostral to the preBötC. We investigated the contribution of the commissural fibers, connecting the respiratory rhythm generators located on the opposite side of the medulla to the generation of respiratory activity in brain stem-spinal cord preparation from 0- to 1-day-old rats. Pre-I neuron activity and the facial nerve and/or first lumbar (L1) root activity were recorded as indicators of the pFRG-driven rhythm. Fourth cervical ventral root (C4) root and/or hypoglossal (XII) nerve activity were recorded as indicators of preBötC-driven inspiratory activity. We found that a midline section that interrupted crossed fibers rostral to the obex irreversibly eliminated C4 and XII root activity, whereas the Pre-I neurons, facial nerve, and L1 roots remained rhythmically active. The facial and contralateral L1 nerve activities were synchronous, whereas right and left facial (and right and left L1) nerves lost synchrony. Optical recordings demonstrated that pFRG-driven burst activity was preserved after a midline section, whereas the preBötC neurons were no longer rhythmic. We conclude that in newborn rats, crossed excitatory interactions (via commissural fibers) are necessary for the generation of inspiratory bursts but not for the generation of rhythmic Pre-I neuron activity.
منابع مشابه
rhythm on both sides of the medulla in newborn rats
26 Each half of the medulla contains respiratory neurons which compose two 27 generators that control respiratory rhythm. One generator consists of the inspiratory 28 neurons in the preBötzinger Complex (preBötC); the other of the preinspiratory (Pre-I) 29 neurons in parafacial respiratory group (pFRG) rostral to the preBötC. We investigated 30 the contribution of the commissural fibers connect...
متن کاملA novel functional neuron group for respiratory rhythm generation in the ventral medulla.
We visualized respiratory neuron activity covering the entire ventral medulla using optical recordings in a newborn rat brainstem-spinal cord preparation stained with voltage-sensitive dye. We measured optical signals from several seconds before to several seconds after the inspiratory phase using the inspiratory motor nerve discharge as the trigger signal; we averaged the optical signals of 50...
متن کاملRespiration-related rhythmic activity in the rostral medulla of newborn rats.
There are at least two respiration-related rhythm generators in the medulla: the pre-Bötzinger complex, which produces inspiratory (Insp) neuron bursts, and the parafacial respiratory group (pFRG), which produces predominantly preinspiratory (Pre-I) neuron bursts. The pFRG Pre-I neuron activity has not been correlated with motor neuron activity in slice or block preparations of rostral medulla....
متن کاملNeural mechanisms of sevoflurane-induced respiratory depression in newborn rats.
BACKGROUND Sevoflurane-induced respiratory depression has been reported to be due to the action on medullary respiratory and phrenic motor neurons. These results were obtained from extracellular recordings of the neurons. Here, the authors made intracellular recordings of respiratory neurons and analyzed their membrane properties during sevoflurane application. Furthermore, they clarified the r...
متن کاملNeurochemistry and anatomy of the ventral medulla
The relationship between the anatomy and neurochemistry of neurons in the ventral medulla oblongata in regions that is responsible for cardiovascular, airways, and respiratory regulation was investigated. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM) were made throughout the ventral medulla in anesthetized rats. Arterial blood pressure, sympathetic nerve activity and phreni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2015